478 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1967

while K», K3, and K, would be zero.

Calibration of the bridge may be accom-
plished by performing preliminary balances
with known values of p, and simultaneously
solving (15) for K; through K, A digital
computer has proven an invaluable aid in per-
forming this mathematical step. For the
rectangular TE;, mode, we have calibrated
the bridge with three short circuits spaced ap-
proximately 120 degrees apart (Fig. 1) fol-
lowed by a matched termination that had been
tuned for zero reflections with a tuned reflec-
tometer {2]. This procedure has yielded ac-
curacies better than 0.001 in magnitude and }
degreein phase over theentirerange 0 2| p| <1
at 10 and 24 GHz,

With the circular TEn mode, a well-
matched termination is difficult to achieve.
We have, therefore, extended the technique
to include five preliminary balances: three
with short circuits; one with a “matched”
termination ; and one more with the “matched”
termination shifted by approximately one-
quarter wave. The resultant five equations
were then solved simultaneously for K,—K;
and also for the reflection coefficient of the
“matched” termination. This procedure has
yielded accuracies better than 0.01 in magni-
tude and 1 degree in phase for 0Z[p|<1 at
24, 48, and 70 GHz. We believe that the ulti-
mate accuracy of the circular TEy mode
bridges is presently being limited by the modal
purity of the available mode transducers.

Differences in the electrical path lengths of
reference and sample arms will cause bridge
balance to be frequency sensitive. For maxi-
mum phase precision, therefore, one should
take steps to insure that these paths are
nearly equal and that the frequency of the
oscillator is stable. Electronic control [8] of
the klystron oscillator frequency has proven
to be a desirable refinement.
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Magnetodynamic Modes in Axially
Magnetized Ferrite Rods Between Two
Parallel Conducting Sheets

Open electromagnetic resonators are well-
known structures for many applications in
the microwave region [1]. Assuming a loss-
less nonconducting medium partly surrounded
by perfectly conducting metal walls, a mani-
fold of undamped oscillations may exist
provided the enmergy of the corresponding
electromagnetic field (with finite amplitude)
remains finite. In practice, high Q modes oc-
cur in open resonators built from isotropic
or anisotropic dielectrics [2], [9] or ferrites
[3], [4] partly enclosed by well conducting
metal walls. In the case of ferrites, the resona-
tor is tunable by a dc magnetic field which
may be useful for many technical applications.

In this correspondence, the open resona-
tor shown in Fig. 1 will be investigated. One
azimuthally symmetric mode of this resonator
structure has been described earlier [4]. All
nonradiating electromagnetic eigensolutions
of e/t time dependence will be analyzed in
the following. The rod is homogeneously
magnetized to saturation (saturation magneti-
Zation M) in z direction by a biasing dc mag-
netic field Hy®. The ferrite is assumed to be
lossless; the conductivity of the metal walls
shall be perfect. The intensities of the RF
electromagnetic fields are supposed to be so
small that the linear relation

By = polmaHy + juslis X Hig) + Huis] (1)

between the magnetic induction B and the
magnetic field H is valid, In (1)

_ 1+ ho‘. _ w
M= ho? — w? k2 = hoi? — w?
where

Hi
hoi= 2 1 w=i
MS fm
Here is
Yo
== — ——ag M
J/ o 9 Ms

(g=g factor, the free electron gyromagnetic
ratio yo=—2.21 107 cm/A-s f=w/2x=fre-
quency).

The boundary conditions of the electric
field E and the magnetic induction on the
metal sheets can be met by

Eif.a = Fif.a sin Bz, @)
E.fa = Faz.a cos Bz, (3)
Hipo = Gif.a cOS B2, (4)
H,ro = Q5.0 810 Bz, %)
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where

T
6=7P b=0,1,2--+). 6)
Subscript “f” denotes fields in the ferrite,
subscript “g” characterizes fields in the air-
filled region. According to Kales [6], differ-
ential equations of the z components (sub-
script z) can be set up from Maxwell’s equa-
tions. By vector operations, it is possible to
derive the transverse components (subscript
f) from the z components. The Kales® for-
mulas are modified to

b
F.y= Uty + Uss, @)
ss—a

82— a

b

Gip = wiy + Uag ®

to get also the solution of an infinitely high
dc magnetic field, where the ferrite behaves
as an isotropic medium [10]. Here s; and s,
are defined by

sia=1[a + ¢ F V@ — o) +4bd], (9

if 5; has the minus sign and s the plus sign
of the square root, respectively. In (9) are

M2 134
a=g9g——k% b= —owuf—>
M1 M1
9 H2
c=-—) d = — weeB—>
M1 I
with
w? w?
9F = — e — B4 k? = — erua
Co Co

(¢s is the relative permittivity of the ferrite
material and ¢, the velocity of the light in
vacuum.)

The solutions of the differential equations
of the z components in cylindrical coordinates
are

Uif = AmZm(our)erms, 10)
oy = BuZn(oor)eimé, 11)
Goo = CrKp(hr)eims, (12)
F.i = DnKu(hr)ems, (13)
where
m=0, £1, £2, - .- .
In these equations
w? -
hz:ﬂz'—c_oz' 0’1,2=\/|81.2!,
Zn(o1,2r) = Imlor.or) for 81,5 > 0,

Zm(a’l,ﬂ') = Im(a'l,zf') for 81,0 < 0.

Jn means the Bessel function of order m,
I, is the modified Bessel function of the first
kind and of the order m, K, is the modified
Bessel function of the second kind and of the
order m.

Nonradiating eigensolutions only exist for
h*>0, i.e., z independent nonradiating eigen-
solutions are not possible. The eigenvalue
equation is obtained by meeting the continu-
ity conditions at r=r,

AnAgy — A1pda = 0. (14a)
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Here Z,’ stands for 4Z,/dr, and K,,' for
3K, /dr, respectively.

If the biasing field is infinitely high
(Hy*— =) and the frequencies (w) are finite,
the ferrite behaves like an isotropic dielectric

=Mu=My=Ms=DMyu=0. (15)

The eigenfrequencies of this isotropic di-
electric resonator can be calculated from (14)
and (15). Results are published in Haas and
Godtmann [7]. In the case of the ferrite, the
eigenvalue equation (14) has been calculated
numerically by computer for various rod di-
mensions. The rod material was RS, an
Mn-Mg-Al feriite from General Ceramics
(U.S.A)). The parameters of the material
(Ms=1030 A/cm, g factor=1.98, ¢ =11.5)
[8] can be regarded to be independent of the
frequency in the interesting region. The
he'/w tuning curves of several modes are
shown in Fig. 2 for ry=0.4 cm and /=0.8 cm.

For hy*# «, all nonradiating eigensolu-
tions have z components of the electric field
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as well as of the magnetic field. The subscripts
of the modes are written in the sequence m, n,
p; mrefers to the ¢, n to the r, and p to the
z direction, respectively. For a finite biasing
field, the eigenfrequencies of the -+|m|np
modes are different from those of the — {m|np
modes. The electromagnetic fields of all modes
rotate. Looking in the z direction, the whole
field configuration of a +|m|np mode ro-
tates counterclockwise, whereas that of a
— | m|np mode rotates clockwise (m >0). The
angular velocity is w/{m].

We will divide the eigensolutions into A
(Above) modes and B (Below) modes. The
A modes are situated above the curve p; =0
(w=~/hy*(he*+1)) in the ho*/w plane. The B
modes occur below curve u =0.

As far as this eigenfrequency is smaller
than the radiation frequency (the lowest fre-
quency when radiation starts), the highest
eigenfrequency of a nonradiating A mode is
the isotropic eigenfrequency (f,i— ). With
decreasing biasing field the eigenfrequency de-
creases too. The Aof/w curve approaches the
curve pu;=0. The spectrum of the eigenfre-
quencies of the A modes is the denser, the
closer it is to curve u; =0.

The isotropic eigenfrequency is common
to both the clockwise ( +|m]) and the coun-
terclockwise (—|m|) rotating A modes for
the same |m|. With decreasing &%, the A'/w
curves split up first, and then towards origin
of the ky* /w plane they meet again. In the case
of the isotropic eigenfrequency, the two fields
rotating in opposite directions with the same
angular velocity and the same amplitudes
result in an alternating field, For m=0 we
will distinguish between HE,., and EHq,,
modes. In the case of the isotropic eigenfre-
quency, the EH,,, eigensolution becomes the
Eyp (or TMy,,) mode, whereas the HE,n,
eigensolution becomes the Hy,, (or TEg,,)
mode.

The lowest eigenfrequency of a B mode
occurs at ky*—0 (saturation provided). With
increasing /,°, the eigenfrequency increases
too. The /¢ /w curve stops for the nonradiat-
ing eigensolution at the radiation frequency.
The iy /w curves of the HE_ w1, B modes are
within the boundaries w = /A*(fie* +1) (11 =0)
and w=~h,*+0.5, whereas the k*/w curves of
the HE jm)np B modes (n>1) as well as all
the other B modes for /,*—0 start at w>0.5.
In the case of relatively large rod dimensions,
a magnetostatic approximation (similar to the
Walker modes [5]) proves a good approxima-
tion for the HE |1, B modes.

Part of the Ay*/w curves calculated was
checked by experiments. In Fig. 3, the values
measured are marked by crosses, while the
corresponding A,'/w curves calculated are
shown by solid lines. In the experimental
resonator, the metal sheets act simultaneously
as magnetic pole pieces so that the biasing dc
field in the ferrite rod can be considered to
be homogeneous. The unloaded Q’s varied
with the various modes. The maximum values
obtained were about 3000. In the case of the
A modes, a rapid decrease of the unloaded Q
can be observed when the modes enter the
(small wave number) spin wave region at
w=hy'. The B modes are always outside this
region.

The ecigensolutions described herein can
be applied to a great number of selective
microwave devices, e.g., bandpass filters,
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Fig. 2. Calculated h¢*/w tuning curves of some modes.
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Fig. 3. Experimental results and the corresponding calculated ho*/w tuning curves of a few modes.

bandstop filters, and selective modulators
with directional characteristic. The magneto-
dynamic modes are also useful for material
measurements especially in the mm-wave re-
gion because of the relatively large dimensions.
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Relative Humidity Effects in Microwave
Resonators

Several factors affect the frequency sta-
bility of microwave resonators. One impor-
tant factor is the stability of the dielectric
medium which fills the resonator. It is the
purpose of this correspondence to analyze
the effect of the change in dielectric constant
upon the resonant frequency of a sealed, air-
filled resonator.

Earlier papers have dealt with the effect
of the dielectric constant on the propagation
of microwaves and its application to the
shift of resonant frequency in an open resona-
tor.'? Most of the work is based on an
empirical equation which relates the dielec-
tric constant of air to temperature and partial
pressures. Since the relationship of the par-
tial pressures is significantly different in open
and in closed systems, it is important to ana-
lyze the frequency shift in resonators with this
in mind.

Montgomery’s nomograph shown in Fig.
4, which is the one most frequently referred
to on this topic, is most useful for an open
resonator operating at high relative humidities
and elevated temperatures. Often, however, a
resonator is sealed at moderate humidities
and room temperature, and completely er-
roneous results can occur if one tries to ex-
trapolate the results of the nomograph to a
closed system. This;is because, as the tempera-
ture is increased in an open system, the par-
tial pressure of the air increases significantly
over the partial pressure of the water vapor,
giving a large net increase in dielectric con-
stant and hence a large decrease in resonant
frequency.

In a closed system, however, the partial
pressure of the air and water vapor increases
at a smaller linear rate which is cancelled by
the increase in temperature. The net result is
that there is a small decrease in dielectric
constant which slightly raises the resonant
frequency.

A similar situation exists at lower temper-
atures but is compounded by the fact that, in
the closed system, 100 percent relative humid-
ity is soon reached and precipitation of the
water vapor occurs with attendent large fre-
quency shift,

In order to analyze the situation, let us
consider the equation

= (w71 {®

With the assumptions of Montgomery! (i.e.,
medium does not introduce excessive or vari-
able loss), one can derive

Af 1 Ak,
—_— e — — 2
f 2 k. @
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